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Abstract This paper is a follow-up of the work [Chen, J.-S.: J. Optimiz. Theory Appl.,
Submitted for publication (2004)] where an NCP-function and a descent method were
proposed for the nonlinear complementarity problem. An unconstrained reformula-
tion was formulated due to a merit function based on the proposed NCP-function.
We continue to explore properties of the merit function in this paper. In particular,
we show that the gradient of the merit function is globally Lipschitz continuous which
is important from computational aspect. Moreover, we show that the merit function
is SC1 function which means it is continuously differentiable and its gradient is semi-
smooth. On the other hand, we provide an alternative proof, which uses the new
properties of the merit function, for the convergence result of the descent method
considered in [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted for publication (2004)].

Keywords Complementarity · SC1 function · Merit function · Semismooth function ·
Descent method

1 Introduction

In the past decades, the well-known nonlinear complementarity problem (NCP) has
attracted much attention due to its various applications in operations research, eco-
nomics, and engineering [6, 11, 17]. The NCP is to find a point x ∈ IRn such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0, (1)

where 〈·, ·〉 is the Euclidean inner product and F = (F1, F2, . . . , Fn)
T maps from IRn

to IRn. We assume that F is continuously differentiable throughout this paper.
There have been many methods proposed for solving the NCP [9, 11, 17]. Among

which, one of the most popular approaches that has been studied intensively recently
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is to reformulate the NCP as an unconstrained minimization problem [5, 7, 10, 13,
14, 28]. Such a function that can constitute an equivalent unconstrained minimization
problem for the NCP is called a merit function. In other words, a merit function is a
function whose global minima are coincident with the solutions of the original NCP.
For constructing a merit function, the class of functions, so-called NCP-functions and
defined as below, serves an important role.

Definition 1.1 A function φ : IR2 → IR is called an NCP-function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

A popular NCP-function intensively studied recently is the well-known Fischer–
Burmeister NCP-function [7, 8, 24] defined as

φ(a, b) =
√

a2 + b2 − (a + b). (3)

Let � : IRn → IRn be

�(x) =





φ(x1 , F1(x))
...

φ(xn , Fn(x))




 . (4)

Then the function � : IRn → IR+ defined by

�(x) := 1
2
‖�(x)‖2 = 1

2

n∑

i=1

φ(xi , Fi(x))2 (5)

is a merit function for the NCP, i.e., the NCP can be recast as an unconstrained
minimization:

min
x∈IRn

�(x). (6)

In the paper [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004)], an NCP-
function which is an extension of the Fischer–Burmeister function (3) was studied.
More specifically, they define φp : IR2 → IR by

φp(a, b) := ‖(a, b)‖p − (a + b), (7)

where ‖(a, b)‖p denotes the p-norm of (a, b), i.e., ‖(a, b)‖p = p
√|a|p + |b|p. In other

words, in the function φp, the 2-norm of (a, b) in the Fischer–Burmeister function
(3) is replaced by more generally a p-norm of (a, b) with p ≥ 2. This function φp is
still an NCP-function as was noted in Tseng’s paper [26]. Nonetheless, there was no
further study on this NCP-function even for p = 3 until the recent paper [Chen, J.-S.:
J. Optimiz. Theory Appl., Submitted (2004)] by the author. Following the function φp,
we can further define ψp : IR2 → IR+ by

ψp(a, b) := 1
2
|φp(a, b)|2. (8)

The function ψp is a nonnegative NCP-function and smooth on IR2 with some favor-
able properties, see [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004)]. In this
paper, we continue to explore properties of ψp as will be seen in Sect. 3. Analogous
to �, the function �p : IRn → IRn given by
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�p(x) =





φp(x1 , F1(x))
...

φp(xn , Fn(x))




 (9)

yields a merit function �p : IRn → IR+ for the NCP where

�p(x) := 1
2
‖�p(x)‖2 = 1

2

n∑

i=1

φp(xi , Fi(x))2 =
n∑

i=1

ψp(xi , Fi(x)). (10)

As shown in [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004)],�p is a continu-
ously differentiable merit function for the NCP. Therefore, classical iterative methods
such as Newton method can be applied to the unconstrained smooth minimization of
the NCP, i.e.,

min
x∈IRn

�p(x). (11)

On the other hand, derivative-free methods have also attracted much attention
which do not require computation of derivatives of F [10, 13, 27]. Derivative-free
methods, taking advantages of particular properties of a merit function, are suitable
for problems where the derivatives of F are not available or expensive. In this paper,
we also study a derivative-free descent algorithm for solving the NCP based on the
merit function �p in Sect. 4. Indeed, the descent method was considered in [Chen,
J.-S.: J. Optimiz. Theory Appl., Submitted (2004)], we apply the new properties of ψp
explored in this paper to provide an alternative proof for the convergence result.

Throughout this paper, IRn denotes the space of n-dimensional real column vectors
and T denotes transpose. For any differentiable function f : IRn → IR, ∇f (x) denotes
the gradient of f at x. For any differentiable mapping F = (F1, . . . , Fm)

T : IRn → IRm,
∇F(x) = [∇F1(x) · · · ∇Fm(x)] denotes the transpose Jacobian of F at x. We write
z = ◦(α) with α ∈ IR and z ∈ IRn to mean ‖z‖/|α| tends to zero as α → 0. Also, we
denote by ‖x‖p the p-norm of x and by ‖x‖ the Euclidean norm of x. In the whole
paper, we assume p is an integer greater than or equal to 2.

2 Preliminaries

In this section, we recall some background concepts and review some known materi-
als which are crucial to the subsequent analysis. We begin with the monotonicity of a
mapping. Let F : IRn → IRn, then F is monotone if 〈x − y, F(x) − F(y)〉 ≥ 0, for all
x, y ∈ IRn; F is strictly monotone if 〈x−y, F(x)−F(y)〉 > 0, for all x, y ∈ IRn and x �= y;
and F is strongly monotone with modulusµ > 0 if 〈x−y, F(x)−F(y)〉 ≥ µ‖x−y‖2, for
all x, y ∈ IRn. Next, we recall the so-called semismooth functions. First, we say that F is
strictly continuous (also called ‘locally Lipschitz continuous’) at x ∈ IRn [23, Chap. 9]
if there exist scalars κ > 0 and δ > 0 such that

‖F(y)− F(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ IRn with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ IRn. If δ can be
taken to be ∞, then F is Lipschitz continuous with Lipschitz constant κ . Define the
function lipF : IRn → [0, ∞] by
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lipF(x) := lim sup
y,z→x

y�=z

‖F(y)− F(z)‖
‖y − z‖ .

Then F is strictly continuous at x if and only if lipF(x) is finite. We say F is directionally
differentiable at x ∈ IRn if

F ′(x; h) := lim
t→0+

F(x + th)− F(x)
t

exists ∀h ∈ IRn;

and F is directionally differentiable if F is directionally differentiable at every x ∈ IRn.
F is differentiable (in the Fréchet sense) at x ∈ IRn if there exists a linear mapping
∇F(x) : IRn → IRn such that

F(x + h)− F(x)− ∇F(x)h = o(‖h‖).
We say that F is continuously differentiable if F is differentiable at every x ∈ IRn and
∇F is continuous.

If F is strictly continuous, then F is almost everywhere differentiable by Rademach-
er’s Theorem—see [3] and [23, Sect. 9J]. In this case, the generalized Jacobian ∂F(x)
of F at x (in the Clarke sense) can be defined as the convex hull of the generalized
Jacobian ∂BF(x), where

∂BF(x) :=
{

lim
xj→x

∇F(xj)
∣
∣F is differentiable at xj ∈ IRn

}
.

The notation ∂B is adopted from [19]. In [23, Chap. 9], the case of n = 1 is considered
and the notations “∇̄” and “∂̄” are used instead of, respectively, “∂B” and “∂”.

Assume F : IRn → IRn is strictly continuous. We say F is semismooth at x if F is
directionally differentiable at x and, for any V ∈ ∂F(x + h), we have

F(x + h)− F(x)− Vh = o(‖h‖).
We say F is ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for any
V ∈ ∂F(x + h), we have

F(x + h)− F(x)− Vh = O(‖h‖1+ρ).

The following lemma, proven by Sun and Sun [25, Thm. 3.6] using the definition
of generalized Jacobian,(Sun and Sun did not consider the case of o(‖h‖) but their
argument readily applies to this case.) enables one to study the semismooth property
of F by examining only those points x ∈ IRn where F is differentiable and thus work
only with the Jacobian of F, rather than the generalized Jacobian.

Lemma 2.1 Suppose F : IRn → IRn is strictly continuous and directionally differen-
tiable in a neighborhood of x ∈ IRn. Then, for any 0 < ρ < ∞, the following two
statements (where O(·) depends on F and x only) are equivalent:

(a) For any h ∈ IRn and any V ∈ ∂F(x + h),

F(x + h)− F(x)− Vh = o(‖h‖) (respectively, O(‖h‖1+ρ)).

(b) For any h ∈ IRn such that F is differentiable at x + h,

F(x + h)− F(x)− ∇F(x + h)h = o(‖h‖) (respectively, O(‖h‖1+ρ)).
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We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth
(respectively, ρ-order semismooth) at every x ∈ IRn. We say F is strongly semi-
smooth if it is 1-order semismooth. Convex functions and piecewise continuously
differentiable functions are examples of semismooth functions. The composition of
two (respectively, ρ-order) semismooth functions is also a (respectively, ρ-order)
semismooth function. The property of semismoothness plays an important role in
nonsmooth Newton methods [19, 21] as well as in some smoothing methods. For
extensive discussions of semismooth functions, see [8, 15, 21].

Now, we review some useful properties about φp,ψp defined as in (7) and (8),
respectively which will be used for the analysis in the subsequent sections. We notice
that the function φp reduces to the Fischer–Burmeister function given as in (3) when
p = 2. Thus, most properties are extensions of properties of Fischer–Burmeister func-
tion. For detailed proofs of them, please refer to [Chen, J.-S.: J. Optimiz. Theory Appl.,
Submitted (2004)].

Lemma 2.2 ([Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004), Prop. 3.1]) Let
φp : IR2 → IR be defined as (7) where p ≥ 2. Then

(a) φp is an NCP-function, i.e., it satisfies (2).
(b) φp is sub-additive, i.e., φp(w + w′) ≤ φp(w)+ φp(w′) for all w, w′ ∈ IR2.
(c) φp is positively homogeneous, i.e., φp(αw) = αφp(w) for all w ∈ IR2 and α ≥ 0.
(d) φp is convex, i.e., φp(αw + (1 − α)w′) ≤ αφp(w)+ (1 − α)φp(w′) for all w, w′ ∈ IR2

and α ≥ 0.
(e) φp is Lipschitz continuous with L1 = 1 + √

2, i.e., |φp(w)− φp(w′)| ≤ L1‖w − w′‖;
or with L2 = 1 + 2(1−1/p), i.e., |φp(w)− φp(w′)| ≤ L2‖w − w′‖p for all w, w′ ∈ IR2.

Lemma 2.2(b) and (c) imply that φp is sublinear, i.e., it satisfies

φp(αw + βw′) ≤ αφp(w)+ βφp(w′)

for all w, w′ ∈ IR2 and α,β ≥ 0. This can be seen by the fact [1, Prop. 3.11] that a
function from IRn to IR is sublinear if and only if it is positively homogeneous and sub-
additive. Note that the sublinear condition is stronger than convexity. In fact, under
Lemma 2.2(c), Lemma 2.2(b) is equivalent to Lemma 2.2(d). This is from [22, Thm.
4.7] that a positively homogeneous function is convex if and only if it is sub-additive.

Lemma 2.3 ([Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004), Prop. 3.2]) Let
φp,ψp be defined as (7) and (8), respectively, where p ≥ 2. Then

(a) ψp is an NCP-function, i.e., it satisfies (2).
(b) ψp(a, b) ≥ 0 for all (a, b) ∈ IR2.
(c) ψp is continuously differentiable everywhere. Moreover, ∇aψp(0, 0) = ∇bψp(0, 0) =

0 and

∇aψp(a, b) =
(

ap−1

‖(a, b)‖p−1
p

− 1

)

φp(a, b),

∇bψp(a, b) =
(

bp−1

‖(a, b)‖p−1
p

− 1

)

φp(a, b), (12)

for (a, b) �= (0, 0) with p is even, whereas
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∇aψp(a, b) =
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)

φp(a, b),

∇bψp(a, b) =
(

sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)

φp(a, b), (13)

for (a, b) �= (0, 0) with p is odd.
(d) ∇aψp(a, b) · ∇bψp(a, b) ≥ 0 for all (a, b) ∈ IR2. The equality holds if and only if

φp(a, b) = 0.
(e) ∇aψp(a, b) = 0 ⇐⇒ ∇bψp(a, b) = 0 ⇐⇒ φp(a, b) = 0.

Lemma 2.4 ([Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004), Prop. 3.5]) Let
�p : IRn → IR be defined as (10) where p ≥ 2. Assume F is either strongly monotone
or uniform P-function, then the level sets L(�p, γ ) are bounded for all γ ∈ IR.

In additional to the above properties of φp and ψp, we still need the following two
lemmas for the analysis in the subsequent sections.

Lemma 2.5 ([12, (1.3)]) Let x ∈ IRn and 1 < p1 < p2. Then

‖x‖p2 ≤ ‖x‖p1 ≤ n(1/p1−1/p2)‖x‖p2 .

Lemma 2.6 If F : D ⊆ IRn → IRm has a second derivative at each point of a convex set
D0 ⊆ D, then

‖∇F(y)− ∇F(x)‖ ≤ sup
0≤t≤1

‖∇2F(x + t(y − x))‖ · ‖y − x‖.

Proof This is Theorem 3.3.5 of [16] (page 78). �

3 The semismooth-related properties of the NCP and merit functions

In this section, we study some semismooth-related properties of φp including semi-
smooth and almost smooth properties as well as SC1 and LC1 properties of ψp.
The semismooth property is very important from the computational point of view.
In particular, it plays a fundamental role in the superlinear convergence analysis of
generalized Newton methods, see [19, 21, 29]. The classes of SC1 and LC1 functions
have been a subject of interest in relation to the development minimization algorithm.
We will introduce their definitions later. We begin this section by showing that the
functions φp and �p are semismooth (in fact, they are strongly semismooth as shown
in Corollary 3.1). Its proof is easy and routine.

Proposition 3.1 The function �p : IRn → IRn defined as (9) is semismooth.

Proof We notice that φp is convex by Lemma 2.2(d), and hence is a semismooth
function. We also observe that each component of �p(x) is the composite of the con-
vex function φp : IR2 → IR and the differentiable function (xi, Fi(x))T : IRn → IR2.
Since convex and differentiable functions are semismooth and the composition of
semismooth functions is semismooth, it yields that �p is semismooth. �

An important concept in relation to semismooth function is the SC1 function, so
we next introduce its definition as below.
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Definition 3.1 A function f : IRn → IR is said to be an SC1 function if f is continuously
differentiable and its gradient is semismooth.

We can view SC1 functions are functions lying between C1 and C2 functions. By
defining SC1 functions, many results regarding the minimization of C2 functions can
be extended to the minimization of SC1 functions, see [18] and references therein.
For applications and more details of SC1 functions, please refer to the excellent book
[4]. Prop. 3.2 shows that ψp is an SC1 function; hence, if every Fi is SC1 function then
so is �p. Before presenting its proof, we need a very important and crucial technical
lemma, which states ∇ψp is globally Lipschitz continuous. The lemma will not only
be used in the proof of Prop. 3.2 but also for the analysis of convergence result of the
descent algorithm in Sect. 4.

Lemma 3.1 The gradient of the function ψp defined as (8) is Lipschitz continuous, that
is, there exists L > 0 such that

‖∇ψp(a, b)− ∇ψp(c, d)‖ ≤ L‖(a, b)− (c, d)‖, (14)

for all (a, b), (c, d) ∈ IR2.

Proof Following the gradient of ψp given as in (12) and (13) and then applying the
chain rule and quotient rule (the computation is routine though tedious, so we omit
the details), we have the following two cases.

If p is even and (a, b) �= (0, 0), then

∇2
aaψp(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)2

+ (p − 1)ap−2bp

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a + b)

)
,

∇2
abψp(a, b) = ∇2

baψp(a, b) =
(

ap−1

‖(a, b)‖p−1
p

− 1

) (
bp−1

‖(a, b)‖p−1
p

− 1

)

,

− (p − 1)ap−1bp−1

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a + b)

)
,

∇2
bbψp(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1

)2

+ (p − 1)apbp−2

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a + b)

)
.

It is clear that
|a|p−1

‖(a, b)‖p−1
p

≤ 1 and it also follows

|a|p−2 · |b|p ≤
(

max{|a|, |b|}
)2p−2

≤
(

p
√|a|p + |b|p

)2p−2 ≤ ‖(a, b)‖2p−2
p ,

that

|a|p−2|b|p
‖(a, b)‖2p−2

p

≤ 1. Similarly,
|a|p|b|p−2

‖(a, b)‖2p−2
p

≤ 1. (15)

On the other hand, by Lemma 2.5, we have

|a| + |b| ≤ √
2
√

a2 + b2 = √
2‖(a, b)‖2 ≤ √

2 · 2(1/2−1/p)‖(a, b)‖p = 2(1−1/p)‖(a, b)‖p.



572 J Glob Optim (2006) 36:565–580

Applying all the above, we can give an upper bound for ∇2
aaψp(a, b) as below.

∣
∣
∣
∣∇2

aaψp(a, b)

∣
∣
∣
∣

≤
(

ap−1

‖(a, b)‖p−1
p

+ 1

)2

+ (p − 1)|a|p−2|b|p
‖(a, b)‖2p−2

p

+ (p − 1)|a|p−2|b|p · (|a| + |b|)
‖(a, b)‖2p−1

p

≤ 4 + (p − 1)+ (p − 1)|a|p−2|b|p · 2(1−1/p)‖(a, b)‖p

‖(a, b)‖2p−1
p

≤ 4 + (p − 1)+ (p − 1)2(1−1/p)

= 4 + (p − 1)
[

1 + 2(1−1/p)
]

,

where the last inequality holds due to (15). By the same arguments, we also have

∣
∣
∣
∣∇2

bbψp(a, b)

∣
∣
∣
∣ ≤ 4 + (p − 1)

[
1 + 2(1−1/p)

]
.

Now, we estimate the upper bound for ∇2
abψp(a, b) = ∇2

baψp(a, b) as below.

∣
∣
∣
∣∇2

abψp(a, b)

∣
∣
∣
∣ =

∣
∣
∣
∣∇2

baψp(a, b)

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

ap−1

‖(a, b)‖p−1
p

− 1

∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣

bp−1

‖(a, b)‖p−1
p

− 1

∣
∣
∣
∣
∣

+ (p − 1)|a|p−1|b|p−1

‖(a, b)‖2p−1
p

(
‖(a, b)‖p + (|a| + |b|)

)

≤
(

|a|p−1

‖(a, b)‖p−1
p

+ 1

) (
|b|p−1

‖(a, b)‖p−1
p

+ 1

)

+ (p − 1)|a|p−1|b|p−1

‖(a, b)‖2p−2
p

+ (p − 1)|a|p−1|b|p−1 · (|a| + |b|)
‖(a, b)‖2p−1

p

≤ 4 + (p − 1)+ (p − 1)|a|p−1|b|p−1 · 2(1−1/p)‖(a, b)‖p

‖(a, b)‖2p−1
p

≤ 4 + (p − 1)+ (p − 1)2(1−1/p)

= 4 + (p − 1)
[

1 + 2(1−1/p)
]

,

where the third and fourth inequalities are true by the similar result as (15), that is,

|a|p−1|b|p−1

‖(a, b)‖2p−2
p

≤ 1.

If p is odd and (a, b) �= (0, 0), then we obtain
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∇2
aaψp(a, b) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)2

+ sgn(a)sgn(b) · (p − 1)ap−2bp

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a + b)

)
,

∇2
abψp(a, b) = ∇2

baψp(a, b) =
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

) (
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)

,

− sgn(a)sgn(b) · (p − 1)ap−1bp−1

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a + b)

)
,

∇2
bbψp(a, b) =

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)2

+ sgn(a)sgn(b) · (p − 1)apbp−2

‖(a, b)‖2p−1
p

(
‖(a, b)‖p − (a + b)

)
.

In fact, the upper bounds for ∇2
aaψp(a, b), ∇2

abψp(a, b), ∇2
bbψp(a, b) remain the same

by following exactly the same steps as in the case where p is even. Thus, there exist a
constant L > 0 independent of (a, b) such that

‖∇2ψp(a, b)‖ ≤ L, ∀ (a, b) �= (0, 0) ∈ IR2.

Then, by Lemma 2.6, we have

‖∇ψp(a, b)− ∇ψp(c, d)‖ ≤ L‖(a, b)− (c, d)‖, (16)

for all (a, b), (c, d) ∈ IR2 with (0, 0) �∈ [(a, b), (c, d)]. Moreover, (16) also holds in
case (a, b) = (c, d) = (0, 0) since ∇aψp(a, b) = ∇bψp(a, b) = 0. Therefore, we can
assume (a, b) �= (0, 0). From Lemma 2.3(c), ψp is continuously differentiable for all
(a, b) ∈ IR2 with ∇ψp(0, 0) = (0, 0); then using a continuity argument, we obtain (16)
remains true for all (c, d) ∈ IR2. Thus, (16) holds for all (a, b), (c, d) ∈ IR2 which says
ψp is globally Lipschitz continuous. �

Proposition 3.2 The function ψp defined as in (8) is an SC1 function. Hence, if every
Fi is an SC1 function, then the function �p given as (10) is also an SC1 function.

Proof It is known by Lemma 2.3(c) that ψp is continuously differentiable, it remains
to show that the gradient of ψp is semismooth. From Lemma 3.1, ∇ψp is Lipschitz
continuous; hence is strictly continuous (locally Lipschitz continuous). Therefore, to
check semismoothness of ∇ψp, we only need to show that ∇ψp satisfies Lemma 2.1(b).
More specifically, we only need to check semismoothness at (0, 0) because at other
points ∇ψp is continuously differentiable (see the proof of Lemma 3.1), hence is semi-
smooth. For this purpose, we will have to verify that the equation in Lemma 2.1(b) is
satisfied, i.e., for any (h1, h2) ∈ IR2 such that ∇ψp is differentiable at (h1, h2), we have

∇ψp(h1, h2)− ∇ψp(0, 0)− ∇2ψp(h1, h2) · h = ◦(‖(h1, h2)‖). (17)

To prove (17), we have two cases where p is even and p is odd.
For p is even, we denote (�1,�2) the left-hand side of (17). Then, we have
[
�1
�2

]
:=

[
k1
k2

]
· φp(h1, h2)−

[
0
0

]

−







k2
1 +

(
(p−1)hp−2

1 hp
2

‖(h1,h2)‖2p−1
p

)
φp(h1, h2) k1 · k2 − k3φp(h1, h2)

k1 · k2 − k3φp(h1, h2) k2
2 +

(
(p−1)hp

1 hp−2
2

‖(h1,h2)‖2p−1
p

)
φp(h1, h2)





 ·

[
h1
h2

]
,

(18)
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where

k1 =
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)

,

k2 =
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

, (19)

k3 = (p − 1)hp−1
1 hp−1

2

‖(h1, h2)‖2p−1
p

.

By plugging (19) into (18) and writing out �1 and �2, we obtain that �1 = 0 and
�2 = 0. To see this, we compute �1 as below:

�1 =
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)
φp(h1, h2)−

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1
)2

h1

− (p − 1)hp−1
1 hp

2

‖(h1, h2)‖2p−1
p

· φp(h1, h2)−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h2

+ (p − 1)hp−1
1 hp

2

‖(h1, h2)‖2p−1
p

· φp(h1, h2)

= φp(h1, h2)

[(
hp−1

1

‖(h1, h2)‖p−1
p

− 1
)

− (p − 1)hp−1
1 hp

2

‖(h1, h2)‖2p−1
p

+ (p − 1)hp−1
1 hp

2

‖(h1, h2)‖2p−1
p

]

−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)2

h1 −
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h2

= φp(h1, h2)

(
hp−1

1

‖(h1, h2)‖p−1
p

− 1
)

−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)2

h1

−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h2

=
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
) [

φp(h1, h2)−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)

h1 −
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h2

]

=
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
) [

‖(h1, h2)‖p − hp
1 + hp

2

‖(h1, h2)‖p−1
p

]

=
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)

· 0

= 0 ,

where the second-to-last equality is true since hp
1 + hp

2 = ‖(h1, h2)‖p
p when p is even.

Similarly,
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�2 =
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)
φp(h1, h2)−

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1
)2

h2

− (p − 1)hp
1hp−1

2

‖(h1, h2)‖2p−1
p

· φp(h1, h2)−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h1

+ (p − 1)hp
1hp−1

2

‖(h1, h2)‖2p−1
p

· φp(h1, h2)

= φp(h1, h2)

[(
hp−1

2

‖(h1, h2)‖p−1
p

− 1
)

− (p − 1)hp
1hp−1

2

‖(h1, h2)‖2p−1
p

+ (p − 1)hp
1hp−1

2

‖(h1, h2)‖2p−1
p

]

−
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)2

h2 −
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h1

= φp(h1, h2)

(
hp−1

2

‖(h1, h2)‖p−1
p

− 1
)

−
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)2

h2

−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h1

=
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
) [

φp(h1, h2)−
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)

h1 −
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
)

h2

]

=
(

hp−1
2

‖(h1, h2)‖p−1
p

− 1
) [

‖(h1, h2)‖p − hp
1 + hp

2

‖(h1, h2)‖p−1
p

]

=
(

hp−1
1

‖(h1, h2)‖p−1
p

− 1
)

· 0

= 0 ,

where the second-to-last equality is true since hp
1 + hp

2 = ‖(h1, h2)‖p
p when p is even.

From the above two expressions of �1 and �2, it implies that (17) is satisfied. Thus,
∇ψp is semismooth at (0, 0) for the case where p is even.

For p is odd, following the same arguments leads to the same verifications. There-
fore, we complete proving that ∇ψp is semismooth, and henceψp is SC1 function. The
second statement follows immediately from this result. �

We want to point out one thing that, for p = 2,ψp was already proved an SC1

function in [4, 5] (Indeed, it was first formally shown in [5]). Prop. 3.2 is a general
extension for any p ≥ 2 and its proof is much more complicated than the case of p = 2.
In addition to SC1 functions, we also introduce LC1 functions here.

Definition 3.2 A function f : IRn → IR is called an LC1 function if f is continuously
differentiable and its gradient is locally Lipschitz continuous.

The class of LC1 minimization problems was studied in [20], where the local, su-
perlinear convergence of an approximate Newton method was established under a
semismoothness assumption on the gradient function at a solution point. It is obvious
that any SC1 function is an LC1 function. With the results of Lemma 3.1 and Prop.
3.2, we therefore has the following corollaries.

Corollary 3.1 If every Fi is an LC1 function, then the function�p given as (9) is strongly
semsmooth.
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Proof We know that φp is semismooth, indeed, it is strongly semismooth. This can be
seen by Lemma 2.2(c), Lemma 3.1 and Theorem 7 of [Qi, L., Tseng, P.: Math. Oper.
Res., Submitted (2002)]. Also every LC1 function is strongly semismooth. Thus, the
result follows. �

Corollary 3.2 The function ψp defined as in (8) is an LC1 function. Hence, if every Fi

is an LC1 function, then the function �p given as (10) is also an LC1 function.

Some other issues related to semismooth functions are concepts of piecewise
smooth and almost smooth functions. It is well-known that piecewise smooth func-
tions are examples of semismooth functions and there have emerged other examples
of semismooth functions that are not piecewise smooth recently, see [Qi, L., Tseng,
P.: Math. Oper. Res., Submitted (2002)] and references therein. In particular, these
examples include the p-norm function with 1 < p < ∞ defined on IRn where n ≥ 2,
the Euclidean norm function, pseudo-smooth NCP-functions, smoothing functions,
etc.. To close this section, we point out that the NCP-function studied in this paper
and [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004)] is indeed strongly almost
smooth since it is based on the p-norm function. We briefly state definition of almost
smooth functions and the result as below.

Definition 3.3 The almost smooth (respectively, strongly almost smooth) functions
are functions that are semismooth (respectively, strongly semismooth) on the whole
space IRn and smooth everywhere except on sets with “dimension” less than n − 1 in
the sense that the sets do not locally partition IRn into multiple connected components.

By applying Lemma 2.2(c), 3.1 and a result in [Qi, L., Tseng, P.: Math. Oper. Res.,
Submitted (2002)], we immediately have an interesting property in relation to strongly
almost smoothness for �p. For more details regarding to almost smooth and strongly
almost smooth functions, please refer to the recent paper [Qi, L., Tseng, P.: Math.
Oper. Res., Submitted (2002)].

Proposition 3.3 If every Fi is an LC1 function, then the function �p defined as (9) is
strongly almost smooth function.

Proof This result follows by Lemma 2.2(c), Prop. 3.1, and Theorem 7 of [Qi, L., Tseng,
P.: Math. Oper. Res., Submitted (2002)]. �

4 A descent method

In this section, we study an almost the same descent method as in Sect. 4 of [Chen,
J.-S.: J. Optimiz. Theory Appl., Submitted (2004)] for solving the unconstrained mini-
mization (11), which does not require the derivative of F involved in the NCP. In fact,
we consider the same search direction for the algorithm as in [Chen, J.-S.: J. Optimiz.
Theory Appl., Submitted (2004)]:

dk := −∇bψp(xk, F(xk)), (20)

except the way to obtain the step-size is slightly different (see Step 3). Such a way
to find step-size can also be found in the literature, for instance in [10]. Using the
property of ψp being globally Lipschitz continuous (see Lemma 3.1), we have an
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alternative proof for the convergence result of the same descent method considered
as in [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004)]. We state the detailed
steps as below.

Algorithm 4.1 (Step 0) Choose x0 ∈ IRn, ε ≥ 0, σ ∈ (0, 1),β ∈ (0, 1) and set k := 0.
(Step 1) If �p(xk) ≤ ε, then Stop.
(Step 2) Let

dk := −∇bψp(xk, F(xk)).

(Step 3) Compute a step-size tk := βmk , where mk is the smallest nonnegative inte-
ger m satisfying the Armijo-type condition:

�p(xk + βmdk) ≤ �p(xk)− σβ2m‖dk‖2. (21)

(Step 4) Set xk+1 := xk + tkdk, k := k + 1 and Go to Step 1.

We wish to show the global convergence result for Algorithm 4.1 under the strongly
monotone assumption of F. The following lemmas plus Lemma 3.1 will enable the
convergence result for the algorithm. In what follows, we assume that the parameter
ε used in Algorithm 4.1 is set to be zero and Algorithm 4.1 generates an infinite
sequence {xk}.
Lemma 4.1 ([Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004), Lem. 4.1]) Let
xk ∈ IRn and F be a monotone function. Then the search direction defined as (20) sat-
isfies the descent condition ∇�p(xk)Tdk < 0 as long as xk is not a solution of the NCP.
Moreover, if F is strongly monotone with modulusµ > 0 then ∇�p(xk)Tdk ≤ −µ‖dk‖2.

Lemma 4.2 If F is strongly monotone, then the NCP has at most one solution.

Proof Suppose there are two solutions ζ ∗, x∗ ∈ IRn such that
{ 〈F(ζ ∗), ζ ∗〉 = 0,

F(ζ ∗) ≥ 0, ζ ∗ ≥ 0
and

{ 〈F(x∗), x∗〉 = 0,
F(x∗) ≥ 0, x∗ ≥ 0.

By F is strongly monotone, we have 〈F(ζ ∗)− F(x∗), ζ ∗ − x∗〉 > 0. However,

〈F(ζ ∗)− F(x∗), ζ ∗ − x∗〉
= 〈F(ζ ∗), ζ ∗〉 + 〈F(x∗), x∗〉 − 〈F(ζ ∗), x∗〉 − 〈F(x∗), ζ ∗〉
= −〈F(ζ ∗), x∗〉 − 〈F(x∗), ζ ∗〉
≤ 0,

where the inequality is due to F(ζ ∗), ζ ∗, F(x∗), x∗ are all nonnegative. Hence, it is a
contradiction and therefore there is at most one solution for the NCP. �

Proposition 4.1 Suppose that F is continuously differentiable and strongly monotone
with modulus µ > 0. Let x0 ∈ IRn be any starting point and L(x0) denote its level
set. Assume ∇F is Lipschitz continuous in L(x0). Then the sequence {xk} generated by
Algorithm 4.1 converges to the unique solution of the NCP.

Proof From Lemma 3.1 and the assumption of ∇F being Lipschitz continuous, we
obtain ∇�p is also Lipschitz continuous in L(x0), i.e.,

‖∇�p(x)− ∇�p(y)‖ ≤ L‖x − y‖, ∀x, y ∈ L(x0)
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and some constant L > 0. Let xk+1 = xk + tdk, 0 ≤ t ≤ 1 and θk = xk +ρk(xk+1 − xk),
where ρk ∈ (0, 1). Then, Lemma 4.1 and the Mean Value Theorem yield

�p(xk+1)−�p(xk)

= ∇�p(θ
k)T(xk+1 − xk)

= t∇�p(θ
k)Tdk

= t∇�p(xk)Tdk + t(∇�p(θ
k)− ∇�p(xk))Tdk

≤ −tµ‖dk‖2 + tL‖θk − xk‖ · ‖dk‖
≤ (−tµ+ t2L)‖dk‖2,

where the last inequality holds since

‖θk − xk‖ ≤ ‖xk+1 − xk‖ ≤ t‖dk‖.

In other words, we have

�p(xk + tdk) ≤ �p(xk)− σ t2‖dk‖, ∀ 0 ≤ t ≤ min

{
1,

µ

σ + L

}
.

Hence, the step-size tk obtained in Step 3 of the algorithm is bounded from below by

tk ≥ min

{
β,

βµ

σ + L

}
. (22)

Thus, a step length tk > 0 satisfying the Armijo’s rule (21) can be always found, so
the algorithm is well-defined. Now, since {�p(xk)} is decreasing and nonnegative, it
follows from

�p(xk + tdk) ≤ �p(xk)− σ tk‖dk‖2,

and the inequality (22) that

lim
k→∞

‖dk‖2 = 0.

This implies that

lim
k→∞

∇b�p(xk, F(xk)) = 0 (23)

because of the definition of dk as in (20). Then, by Lemma 2.3(e) and (23), any accu-
mulation point of {xk} is a solution of the NCP. On the other hand, {xk} is in L(x0)

which is bounded by Lemma 2.4, so there exists at least one accumulation point x∗.
At last, due to Lemma 4.2, the NCP has a unique solution, so the entire sequence {x∗}
converges to x∗. �

5 Conclusions

In this paper, we have shown properties of the NCP-function φp which is an extension
of the Fischer-Burmeister function as well as properties of ψp which is a merit func-
tion for the NCP formed by φp. They were first proposed in [26] and further studied
recently in [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted (2004)]. In this paper, we
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continued to explore some favorable properties of φp and ψp including semismooth-
ness, SC1-property, LC1-property, and almost smoothness which are important from
computational view of point. Moreover, we have also provided an alternative proof,
which applies the new properties discovered in this paper, for the convergence result
of the descent method considered in [Chen, J.-S.: J. Optimiz. Theory Appl., Submitted
(2004)]. Since ψp is shown SC1 and LC1 function, it is an interesting future topic to
extend some appropriate Newton methods for SC1 and LC1 minimization problems
(see [18]) to the equivalent the minimization based on the merit function ψp.

On the other hand, some other NCP-functions based on the generalized Fischer–
Burmeister function φp are also recently studied in [1] by the author. According to
the theoretical properties built herein and therein, the numerical implementation of
related algorithms including comparison with other existing well-known algorithms
for NCP definitely deserve a systematic study. We will leave it in a subsequent topic.
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